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Abstract—Haptic interaction is critical in physical Human-
Robot Interaction (pHRI), given its wide applications in manu-
facturing, medical and healthcare, and various industry tasks. A
stable haptic interface is always needed while the human operator
interacts with the robot. Passivity-based approaches have been
widely utilised in the control design as a sufficient condition for
stability. However, it is a conservative approach which therefore
sacrifices performance to maintain stability. This paper proposes
a novel concept to characterise an ultimately passive system,
which can achieve the boundedness of the energy in the steady-
state. A so-called Ultimately Passive Controller (UPC) is then
proposed. This algorithm switches the system between a nominal
mode for keeping desired performance and a conservative mode
when needed to remain stable. An experimental evaluation on two
robotic systems, one admittance-based and one impedance-based,
demonstrates the potential interest of the proposed framework
compared to existing approaches. The results demonstrate the
possibility of UPC in finding a more aggressive trade-off between
haptic performance and system stability, while still providing a
stability guarantee.

Index Terms—Physical human-robot interaction, haptic inter-
face, passivity, ultimately passive controller.

I. INTRODUCTION

HAPTIC systems, and more generally physical Human-
Robot Interaction (pHRI), constitute a sub-class of

robotic systems aimed to directly and physically interact with
a human operator. Such systems are used in many applications,
including surgical robotics [1], haptic exploration [2], robot-
assisted rehabilitation [3], manufacturing and smart assem-
bly [4]. In all its applications, the pHRI system needs to
ensure a stable and safe interaction while being able to
render the desired physical behaviour. The systems generally
rely on an impedance control formulation [5] which aims to
regulate the interaction between the haptic interface and its
environment, including the human operator. These can either
be an impedance device, which measures the resulting user dis-
placement and regulates the interaction force, or an admittance
device [6], which measures the interaction force and regulates
the position (or velocity) of the system. In both cases, the

The work has been partially supported by the Australian Research Council’s
Linkage Projects funding scheme (LP180101074).

X. Guo, Z. Liu, V. Crocher, Y. Tan, and D. Oetomo are with the Human
Robotics Laboratory, Mechanical Engineering Department, The University
of Melbourne, Parkville VIC 3010, Australia (e-mail: xinliangg@student.
unimelb.edu.au; zheyul@student.unimelb.edu.au; vcrocher@unimelb.edu.au;
yingt@unimelb.edu.au; doetomo@unimelb.edu.au).

A. H. A. Stienen is with the BioMechanical Engineering Department,
The Delft University of Technology, 2628 CD Delft, Netherlands (e-mail:
a.h.a.stienen@tudelft.nl).

stability of the haptic interaction is critical for both robots
and human operators in preventing undesired or dangerous
behaviours which might be caused by unstable response of the
robot. This stability often comes as a compromise to the haptic
interface performance which is required to render an arbitrary
Virtual Environment (VE). There thus exists a challenge to
appropriately balance the performance and the stability of the
interaction.

One approach to address this problem consists of modelling
the entire interaction, which includes the human operator.
Doing such modelling allows to evaluate the stability of
the entire coupled system, and to design only appropriate
VEs to ensure stability. For example, the impedance of the
human end-point was modelled as a 2nd-order linear time-
invariant (LTI) system as an estimate of the human effect [6],
[7]. However, obtaining accurate models for highly nonlinear
human behaviour is challenging and the robot information
necessary for the modelling exercise is not always available
to users.

Alternatively, passivity-based approaches have been widely
adopted to address this problem due to their ease of imple-
mentation where no model information about the environment
is required [8]. Given that passivity is a sufficient condition to
ensure stability and that the coupling of passive systems is it-
self passive, this ensures stability under the assumption that the
human operator is also passive. However, passivity is a con-
servative method to guarantee stability [9], which inherently
compromises the system performance. While studies [10]–[12]
have aimed to relax passivity constraints, some knowledge of
the environment (i.e. human model) is necessary for alternative
stability analyses. This requirement, in return, offsets the ease
of use offered by passivity-based approaches. Therefore, when
leveraging the passivity concept for practicality, designing a
haptic interface satisfying stability while allowing high fidelity
rendering of the VE remains challenging.

A. Related Work

Multiple passivity-based approaches have been presented
and evaluated in the literature in the past decades. While
presenting some differences (see below), all these approaches
rely on a measure (or observation) of the energy of the system
and attempt to maintain that energy positive at all time.

1) Early work: In the context of pHRI, time-domain pas-
sivity algorithm was introduced in [13] and further elaborated
in [14]. This algorithm is the foundation of most approaches
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developed afterwards. It is implemented as a Passivity Ob-
server (PO) which computes in real-time the amount of
energy of the system by measuring its input(s) and output(s).
When the energy observed is about to become negative, a
Passivity-Controller (PC) modifies the rendered impedance (or
admittance) to dissipate the required amount of excess energy
(typically in the form of a virtual damper). Doing so the energy
generated in the system can be dissipated at all time, and
the passivity — and so the stability — can be ensured. This
approach (referred to as “classic PO-PC”) tends to provide an
average sub-optimal performance — understood as the fidelity
of the effectively rendered VE — at all times, without control
on when the energy is dissipated (and the performance altered).

2) Bounding outputs approaches: Unlike classic PO-PC in
which a PC takes actions to dissipate the excess energy only
after the PO observes it, some approaches have attempted
to modulate (compromise) the original desired performance
— corresponding to the desired reference position or force
signals to be executed by the robot controller — to prevent
violating the passivity condition. One example is the Passive-
Set-Position-Modulation (PSPM) framework [15], which was
proposed to preserve passivity in the scenario of slowly
updating discrete set-position signals (desired positions) of an
impedance trajectory-tracking robot where too large virtual
springs would otherwise lead to unpassive behaviours. This
approach modulates the desired position to be as close as
possible to the original set-position signal, but only to the
extent determined by the system’s available energy to ensure
the system is always passive.

Another representation of such reference modulation based
methods is the force bounding approach (FBA). FBA main-
tains passivity by saturating the desired controller force (de-
fined by VE) below a bound determined by the total ac-
cumulated energy in the system [16]. A more conservative
sufficient passivity condition of FBA was also proposed to
systematically remove the past accumulated dissipation capa-
bility [17] and so avoid the unwanted oscillations caused by
the memory effect. However, as a compromise, adopting this
more conservative condition leads to a potentially lower bound
of permissible controller force and so more heavily sacrificed
performance. A more recent FBA study [18] extended the
passivity condition to involve relative motion between moving
virtual objects and a human operator, so that stable interaction
can be guaranteed even if the VE is dynamic.

Energy Bounding Approach (EBA) is another example of
bounding outputs, where the VE’s permissible impedance
range is bounded, and the desired controller force is adapted
accordingly [19]. This displayable impedance range of VE
is defined by the energy dissipation capability of the haptic
interface (i.e. its effective damping element) so that passivity
is always ensured. Given the intrinsically conservative nature
of EBA, a subsequent study [20] provided a way to relax EBA
constraints, allowing some transient periods with a larger per-
missible impedance range. Still, when rendering an arbitrary
VE, EBA might cause a significant loss of performance to
preserve passivity at all time.

3) Energy tank approaches: All above approaches keep
track of the current energy in the system in order to guarantee

passivity but without explicitly referring to such accumulation
as an “energy tank” (using the terms “energy reservoir” [15]
or “(accumulated) dissipation capability” [17], [19]). Energy-
tank approaches differentiate themselves by defining explicit
policies as to when to spend the accumulated energy. The tank
stores the energy dissipated by the system as an energy margin,
which can be used to implement energy-demanding actions
(i.e. rendering varying stiffness of VE with an impedance
device) when needed while preserving passivity [21]–[24].

A recent implementation leverages the energy tank idea
together with a robot oscillation detector to stabilise the
interaction [25]. This approach proved efficient for pHRI using
admittance devices.

4) Two-layer approaches: Leveraging the strength of en-
ergy tank, a two-layer approach was proposed for passive
bilateral telemanipulation [26]–[29]. This two-layer hierarchy
includes a top layer for implementing desired performance
and a bottom layer for enforcing passivity. If the desired
torque from the top layer exceeds the maximum allowable
torque (determined by the energy tank level), the bottom layer
saturates the controller torque to prevent a loss of passivity.
Given that these two layers work and communicate separately,
this control hierarchy is particularly beneficial to bilateral
telemanipulation as performance can be improved (almost)
independently on the master and slave sides [26].

B. Contribution

Although passivity-based approaches are relatively straight-
forward to implement, their inherently conservative nature
might lead to the persistent intermittent sacrifice of desired
performance as a trade-off for preserving passivity. However,
for some applications, it might be desirable to tie the perfor-
mance to human behaviour instead. One can choose to sacrifice
performance more heavily at a given time when the human
operator is less compliant and to keep a better performance
at all other times. In the case of haptic rendering with an
impedance device [30], [31], clearly sacrificing performance
(i.e. the rendered stiffness) at one given instant (and notifying
the user) instead of regularly mildly affecting it provides a
more accurate rendering of the VE. Rehabilitation using an
admittance device is another example of application: when
the human exhibits high impedance (i.e. high stiffness due
to a spastic reaction or hypertonicity), there is little interest
in highly enforcing the expected transparent behaviour. It is
then desirable to stabilise the system and accumulate excess
energy at a given time to allow an average better performance
afterwards. Therefore, these ideal trade-offs between stability
and performance are still to be defined and implemented for
specific applications.

This paper thus proposes the concept of “ultimate passiv-
ity” — a novel approach that ensures passivity in steady-
state while allowing non-passive behaviours during transient
phases. Such a concept takes advantage of the idea of classic
PO-PC [14] and energy tank [25] by accumulating energy
when performance may be sacrificed to spend it subsequently
to obtain a more desirable performance at all other times.
However, different from all other strategies as summarised in
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Section I-A, the ultimate passivity approach allows bounded
non-passive transients while guaranteeing that the system will
ultimately return to a passive state. Such approach provides
higher flexibility in defining the trade-off between stability and
performance. Specifically, by changing the PC’s configuration,
it allows to determine how often and how quickly the PC
sacrifices the rendering performance to ensure that the system
is ultimately passive based on the application need.

In the remaining of this paper, Section II introduces the
ultimate passivity concept, Section III defines the exact prob-
lem formulation, and Section IV proposes an implementation
framework of Ultimately Passive Controller (UPC) and pro-
vides sufficient conditions to ensure the overall system is ulti-
mately passive. An experimental evaluation on an admittance-
based robot is presented in Section V to compare the perfor-
mance of the proposed UPC with the state of the art. Such
evaluation is also performed on an impedance-based robotic
device in Section VI using different UPC configurations to
provide guidance on UPC parameter selection. Finally, Sec-
tion VII discusses the experimental results.

II. PROPOSED ULTIMATE PASSIVITY CONCEPT

This section establishes the necessary notations and in-
troduces the novel concept of ultimate passivity within the
context of a network denoted as NM , comprising M sub-
systems as depicted in Figure 1. This concept forms the
foundational framework for the subsequent control synthesis
of a physical Human-Robot Interaction (pHRI) system. This
network configuration is referred to as an M-port network. The
energy flowing into the network is in the positive direction,
which is also unequivocally defined by the positive sign and
the direction of the arrow in Figure 1.

As pointed out in [13], the energy Ei(t) of the ith subsystem
is related to its force fi(t) and the velocity vi(t). More
precisely, at the time instant t, the energy Ei(t) can be
computed as

Ei(t) = Ei(0) +

∫ t

0

fi(τ)vi(τ)dτ, i = 1, . . . ,M. (1)

With the prevalence of digital technology, both sensors and
actuators are digital. That is, the sampled force inputs and
velocity output signals are available, i.e., we can measure
{v[j], f [j]}j=1,2,.... Here, for a continuous-time signal s(t), its
sampled signal is s(t) = s[j] = s(jTs),∀t ∈ [jTs, (j +1)Ts),
where Ts is the sampling period.
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Fig. 1. The M-port network model diagram [13].

If the sampling period is sufficient small (i.e. Ts → 0), con-
sequently, the energy Ei(t) defined in (1) can be approximated
by the following discrete-time version:

Ei(t) ≈ Ei[k] = Ei(kTs) =

k∑
j=0

fi[j]vi[j]Ts + Ei(0), (2)

for all t ∈ [kTs, (k+1)Ts). By taking all M subsystems into
consideration, the overall energy for the network NM is

E(t) ≈ E[k] =

M∑
i=1

Ei[k]

=

M∑
i=1

k∑
j=0

fi[j]vi[j]Ts +

M∑
i=1

Ei(0), (3)

for all t ∈ [kTs, (k + 1)Ts). This leads to the following
definition of passivity for the discrete-time network [13].

Definition 1: An M-port network NM with energy computed
as (3) is passive if

E[k] ≥ 0,∀k ∈ N≥0. (4)

We extend the notion of standard passivity by introducing
an ultimately passive network. This novel concept allows for
a relaxation of the passivity requirement at each time instant,
as it places bounds on the energy exhibited while maintaining
passivity in the steady-state condition.

Definition 2: A M-port network NM with energy computed
as (3) is ultimately passive if there exists a non-negative pair
(αt, αs) such that

min
k∈N≥0

E[k] ≥ −αt, (5)

lim
k→∞

E[k] ≥ αs. (6)

Remark 1: The ultimately passive network represents a more
permissive form of a passive network, allowing for instances
of non-passive behaviour characterised by E[k] < 0 for certain
k ∈ N≥0, where N≥0 denotes the set of non-negative integers.
However, this concession is accompanied by the imposition
of limits on the energy function’s transient characteristics,
which are bounded within the range defined by −αt shown in
(5). Furthermore, an ultimately passive system ensures passive
behaviour in steady-state, as described in (6). Notably, it is
important to emphasise that the property of ultimately passive
network is a broader one; a passive network NM is inherently
also ultimately passive, though the converse is not necessarily
true.

Remark 2: While the constant pair (αt, αs) does not in-
fluence the ultimately passive characteristic, it does play a
crucial role in shaping the transient dynamics of the M -port
network system. This selection offers an additional avenue
of design flexibility to engineering practitioners, allowing
them to define the system’s transient behaviours to align with
their specific intentions and requirements. Experimental results
(in Section V and VI) present two examples of achieving
the trade-off between higher transparency and stability for
an admittance interaction and between higher stiffness and
stability for an impedance interaction.
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Remark 3: It is well-known that interconnected passive
systems are passive, as established by [32, Theorem 6.3].
However, since ultimately passive network represents a less
strict condition than standard passive network, it is important
to recognise that the interconnection of ultimately passive
systems does not automatically guarantee an ultimately passive
overarching system. Consequently, a comprehensive analysis
involving the integration of individual subsystems becomes in-
dispensable to ensure that the overarching system is ultimately
passive. Thereby, it introduces an elevated level of complexity
to the design process of interconnected subsystems.

III. PROBLEM FORMULATION

This section introduces the problem formulation of this
work. It includes the components of the pHRI using input and
output signals, followed by the needed assumptions for each
component. In particular, two different types of controllers
used for the virtual environment (VE) are introduced with
their characteristics. The control objective of this work is also
presented.

A. Subsystems and Digital Implementation

The focus of this work is a class of sampled-data pHRI
systems with its diagram shown in Figure 2. It is noted that
many nonlinear behaviours are included in the interaction.
These nonlinear behaviours may result from the saturation of
sensors and actuators of the robot, sampling behaviours of
digital sensors and actuators, the quantisation of sensor data,
and so on.

This work uses digital sensors and digital actuators op-
erating at a sampling period Ts, which is assumed to be
sufficiently small. For a continuous-time signal s(t), after a
sampler or ADC with the sampling period Ts, it becomes a
discrete-time signal s[k],∀t ∈ [kTs, (k + 1)Ts), k ∈ N≥0. For
a discrete-time signal s[k], after passing through a zero-order
hold (ZOH), it becomes a piece-wisely continuous-time signal
ŝ(t) = ŝ(kTs) = s[k],∀t ∈ [kTs, (k + 1)Ts).

Such a sampled-data pHRI system consists of four subsys-
tems: ΣH represents the dynamics of the human, ΣP is the
dynamics of the plant (i.e. the robot), ΣD

C is the digital low-
level controller of the robot, and ΣD

VE is the digital virtual
environment. Each subsystem has its own input and output
signals.

1) The human dynamics ΣH : The first subsystem ΣH has
its corresponding input uh and output yh. In pHRI, the input
signal uh is determined by the robot dynamics subsystem ΣP

(as such uh = yp), and the output signal yh is directly applied
to ΣP (as such yh = up). In an admittance-causality case, uh

denotes velocity and yh denotes force, and vice versa for an
impedance-causality case.

2) The robot dynamics ΣP : The input of ΣP comes from
two parts: one is denoted as up, which is related to the output
of ΣH (human subsystem) yh. The other comes from yc, which
is the output of ΣD

C (the robot low-level controller subsystem)
for robot actuation. The output of the robot is yp, which is
applied to ΣH via uh.

3) The robot low-level controller ΣD
C : The digital low-

level controller has the input of yve, which comes from the
VE subsystem ΣD

VE output and represents the desired VE
rendering behaviour to be implemented by ΣD

C . When the
low-level controller is responsible for dynamic compensation
(i.e. gravity and/or friction), uc is another input to ΣD

C . The
output of this controller subsystem is yc, serving as the robot
actuation signal.

4) The virtual environment ΣD
VE: The digital VE subsystem

input uve upholds the relation of uve[k] = uc[k], and uve is
related to the ΣH output yh given that the human interacts
with the VE through the robot. The output of ΣD

VE (denoted
as yve) depicts the desired VE rendering behaviour and acts
as the input of ΣD

C . The following approximated discrete-time
second-order mass-damper-spring system (with a sampling
period Ts) is employed in this study:

ΣD
VE :



[
xve,1[k + 1]

xve,2[k + 1]

]
=

[
1 Ts

− kve

mve
Ts 1− bve

mve
Ts

]
[
xve,1[k]

xve,2[k]

]
+

[
0

1
mve

Ts

]
uve[k],

yve[k] =
[
1 0

] [xve,1[k]

xve,2[k]

]
,

(7)

where the characteristics of ΣD
VE are determined by the

parameters of VE mass mve, VE damping coefficient bve, and
VE spring constant kve.

With the consideration of sampling behaviours, this pHRI as
shown in Figure 2 has a continuous-time part and a discrete-
time part. To simplify the analysis, we use the concept of
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Fig. 2. The sampled-data pHRI system diagram (adapted from [13]).
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Fig. 3. The system ΣC,P in the sampled-data pHRI system without VE.

discrete-time passivity to represent the sampled input-output
relationship for each subsystem, which means such analysis
relies on the digital implementation (i.e. sampled input and
output signals) of the continuous-time part of the system. It
is noted that by using the closeness of solution between the
discrete-time trajectories and the sampled-data trajectories as
shown in [33, Lemma 3], with sufficiently small sampling
Ts, the concept of discrete-time passivity can be applied to
conclude that this sampled-data system is passive.

B. Assumptions for pHRI

The interconnection of the systems ΣD
C , ZOH and ΣP is

denoted as ΣC,P (see Figure 3) and its energy is EC,P . In
this work, it is assumed that the robot low-level controller ΣD

C

cannot ensure the passivity of ΣC,P . The following assumption
is used to characterise such a behaviour.

Assumption 1: For a given sampling period Ts, in the pHRI
system without VE, the system ΣC,P satisfies

|EC,P [k]− EC,P [k − 1]| ≤ γC,P ,∀k = 1, 2, . . . , (8)

where EC,P [k] =

k∑
j=0

up[j]yp[j]Ts, and γC,P is a positive real

constant. In an admittance-causality case, up is a force signal
and yp is a velocity signal, and vice versa for an impedance-
causality case.

Remark 4: It is noted that in continuous-time, Assumption
1 indicates that there is no finite-escape phenomenon for
the possibly nonlinear dynamics of ΣC,P (e.g. resulting from
saturation or hysteresis of actuators), and such an assumption
is always necessary for a general class of nonlinear dynamic
systems [32, Chapter 3]. Assumption 1 also implies that the
rate of energy change within ΣC,P is bounded, as such, this
assumption holds true for all engineering systems because

their energy cannot jump to positive infinity or negative
infinity in one step. Different from the prevailing assumption
in the existing literature, which requires both subsystems
ΣP and ΣD

C to exhibit passivity, Assumption 1 is notably
less restrictive. More importantly, given the presence of sam-
pling and inherent nonlinear behaviours in pHRI, controllers
designed in continuous-time may not consistently maintain
their passivity [34], Assumption 1 is thus more feasible to
satisfy in practical engineering applications. Furthermore, it
accommodates a broader range of control laws to meet various
performance criteria other than stability or passivity, such as
tracking performance and robustness.

Similarly, instead of assuming ΣH is passive, which is not
always true as indicated in [35], the following assumption
characterises the subsystem ΣH . To simplify the analysis,
though ΣH is defined in continuous time, its sampled input
and output signals are used to characterise its passivity.

Assumption 2: In the pHRI system presented in Figure 2,
for a given sampling Ts, ΣH satisfies

|EH [k]− EH [k − 1]| ≤ γH ,∀k = 1, 2, . . . , (9)

where EH [k] =

k∑
j=0

uh[j]yh[j]Ts, uh[k] and yh[k] are sampled

signals of uh(t) and yh(t) respectively, and γH is a positive
real constant.

C. Switching Between Two Control Laws

In this subsection, Σall represents the overall system pre-
sented in Figure 2 with its energy denoted as Eall. In this
system, we introduce two distinct control laws that operate
within ΣD

PC — representing the digital Passivity Controller
(PC) subsystem — as shown in Figure 4. Each control law is
tailored to a specific objective.

The first, referred to as the “conservative control design” and
denoted as CΣD

PC , aims to stabilise the depicted pHRI system
in Figure 4 under Assumptions 1–2. As this conservative
controller is designed to stabilise the overall system, it is
assumed that CΣD

PC satisfies the following assumption.
Assumption 3: For a given sampling Ts, a system ΣD

C that
satisfies Assumption 1 with γC,P from (8), a system ΣH that
satisfies Assumption 2 with γH from (9), and a positive value
κ, there exists a conservative passivity controller CΣD

PC with

𝚺𝑯 𝚺𝑷

𝒖𝒄[𝐤]

𝒚𝒄[𝒌] 𝒚𝒑𝒄[𝒌]

𝒖𝒑(𝒕)

𝒚𝒑(𝒕)

𝒚𝒉(𝒕)

𝒖𝒉(𝒕)
ZOH

ADC

ෝ𝒚𝒄(𝒕)

𝒖𝒄(𝒕)

𝚺𝒂𝒍𝒍

𝒖𝒗𝒆[𝒌]

𝒚𝒗𝒆[𝒌]

𝚺𝑽𝑬
𝑫

𝚺𝑪
𝑫 𝚺𝑷𝑪

𝑫

Fig. 4. The sampled-data pHRI system with a digital Passivity Controller subsystem denoted as ΣD
PC (adapted from [13]). The output of ΣD

PC is ypc, which
is a resultant signal combining both the desired VE rendering behaviour (depicted by yve) and the PC action, to be implemented by the robot low-level
controller.
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parameters {mPC,C , bPC,C}. This controller ensures that the
following inequality

Eall[N +Nall] =

N+Nall∑
j=N

up[j]yp[j]Ts ≥ 0, (10)

is satisfied for some finite Nall ∈ N≥0 if Eall[N ] ≥ −κ for
any N ∈ N≥0.

Remark 5: This assumption posits the existence of a conser-
vative configuration bPC [k] = bPC,C and mPC [k] = mPC,C ,
which is capable of stabilising a non-passive system with
bounded energy Eall[N ] ≥ −κ by taking the system back to
the passive state (so guaranteeing stability). This assumption
also specifies that if the conservative controller has been
switched on, within the next Nall steps, the overall energy
satisfies Eall[N + Nall] ≥ 0. It is noted that Assumption 3
is related to Assumptions 1 and 2, as the bounded energy
changes in subsystems ensure the energy of the overall system
is bounded, allowing the conservative controller to be able
to ensure that the condition (10) holds. In the combination
of {mPC,C , bPC,C}, bPC,C is necessary for excess energy
dissipation, and mPC,C is an option to be used to assist
system stabilisation (usually for admittance-causality) without
introducing too much complexity in parameter tuning for such
a configuration.

In contrast, the second control law, denoted as NΣD
PC

with parameters {mPC,N , bPC,N}, is crafted to achieve a
desired VE behaviour of nominal performance. This VE can
correspond to an ideal behaviour for the haptic system to
achieve, with NΣD

PC effectively acting as a bypass for the
system to best render the VE. If a nominal performance that
deviates from the pre-defined VE is desired, it is also possible
to setup NΣD

PC parameters to be non-null (i.e. not bypassing
the system), and the proposed algorithm can still function
effectively. It is important to emphasise that this second control
law does not guarantee the passivity or stability of the overall
pHRI system shown in Figure 4. It is also highlighted that as
indicated in [36], [37], transparency or stiffness and stability
are two contradicting requirements.

It is assumed that there are two control laws designed for
VE for different purposes: one is the conservative control
law CΣD

PC {mPC,C , bPC,C} satisfying Assumption 3 and the
other is the nominal controller NΣD

PC {mPC,N , bPC,N} to
achieve the nominal performance. The control objective of
this work is to design an appropriate observer to estimate the
energy flow for ΣD

PC . Furthermore, the projected energy values
will serve as the foundation for crafting a suitable control
algorithm, which we have labelled as “passivity control”.
This algorithm is designed to attain the targeted nominal
performance while ensuring some stability properties through
the lens of ultimate passivity. More precisely, we are hoping
to achieve

1) The overall system Σall is ultimately passive by using
an appropriate passivity controller;

2) The nominal performance is kept as long as possible by
tuning the parameters of the passivity controller.

𝒚𝒑𝒄[𝒌]

𝒖𝒗𝒆[𝒌]

𝒚𝒗𝒆[𝒌]

𝚺𝑽𝑬
𝑫⋯ 𝑵𝚺𝑷𝑪

𝑫 𝑪𝚺𝑷𝑪
𝑫

UPC

𝚺𝑪
𝑫

𝒖𝒄[𝐤]

Fig. 5. The proposed Ultimately Passive Controller (UPC) framework for the
sampled-data pHRI system.

IV. ULTIMATE PASSIVITY IMPLEMENTATION FRAMEWORK

This section proposes an Ultimately Passive Controller
(UPC) to ensure that the overall system Σall is ultimately
passive when both the nominal controller NΣD

PC and the
conservative controller CΣD

PC exist. Such a UPC is based on
the estimated energy from the passivity observer. The role of
UPC is to balance stability and nominal performance. Within
this section, we employ an abstract nominal performance for
the purpose of analysis. The experimental implementation
examples are then provided in Sections V and VI.

A. Proposed Framework

The diagram of the proposed framework is shown in Figure
5. The logic of the design is quite simple: if NΣD

PC is not able
to make Σall ultimately passive, the conservative controller
CΣD

PC will be switched on to ensure the ultimate passivity. If
the system is already ultimate passive using the conservative
controller, the NΣD

PC will be switched on to ensure the
nominal performance.

In this figure, the UPC is a simple switch, which is critical
to ensure the balance between nominal performance and
passivity. Under such a situation, the focus of UPC will be on
the design of switching laws. The challenge is to decide when
to switch back to the nominal controller NΣD

PC and provide
sufficient conditions to ensure Σall is ultimately passive. The
design requirements are

1) There are finite times of switching within a finite time
interval (i.e. user-defined interval of interest during pHRI
activities);

2) In order to ensure the inequality (6) holds, the conser-
vative model CΣD

PC needs to be switched on with no
further switching when t → ∞.

As shown in Figure 6, the role of the Passivity Observer
(PO) is to try to estimate the energy flow of Σall.

𝒖𝒑(𝒕)

𝒚𝒑(𝒕)

𝒚𝒉(𝒕)

𝒖𝒉(𝒕)

⋯𝚺𝑯 PO

Fig. 6. The Passivity Observer (PO) for the sampled-data pHRI system.
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B. Passivity Observer
In this subsection, we would like to estimate the energy

flow of Σall, which serves as the criterion for the design of
UPC. Here Σall denotes the overall system, its energy can be
calculated as

Eall[k] =

k∑
n=0

up[n]yp[n]Ts + Eall[0], (11)

where up[n] is the sampled input of the robot ΣP and yp[n]
is the sampled output of ΣP . We also use an estimation of the
future energy (one-step prediction):

Êall [k + 1 |k ] = Eall[k] + up[k + 1]yp[k + 1]Ts

≈ Eall[k] + up[k]yve[k]Ts, (12)

when Ts is sufficiently small relative to the change of the Σall.
Here Êall [k + 1 |k ] indicates the predicted value based on the
measurements from Eall[k] and the VE command yve[k] to be
applied in the future step [14].

C. Ultimately Passive Controller (UPC)
The proposed UPC is designed on the basis of the predicted

energy. It generates the necessary switching between the nom-
inal controller NΣD

PC and the conservative controller CΣD
PC

independently of the VE by selecting an upper bound Ē > 0
and a lower bound −E < 0.

A logic variable is introduced at each sampling instant k:

Ls[k + 1] =


−1 if Êall[k|k − 1] ≥ −E

∧ Êall[k + 1|k] < −E
1 if Êall[k|k − 1] ≤ Ē

∧ Êall[k + 1|k] > Ē
0 else

, (13)

where Êall[k + 1|k] is defined in (12). Here the notion of ∧
indicates that two conditions have to be satisfied simultane-
ously.

We also count the number of switches using a counter:

Nc[k + 1] =

{
Nc[k] if Ls[k + 1] = 0
Nc[k] + 1 if Ls[k + 1] ̸= 0

, (14)

where Nc[0] = 0. This leads to the following UPC:

ΣD
PC [k + 1]

=


NΣD

PC [k + 1] if Ls[k + 1] = 1 ∧ Nc[k] ≤ Nf
CΣD

PC [k + 1] if Ls[k + 1] = −1
ΣD

PC [k] else,
(15)

where Nf is an integer representing maximum allowable
switches.

Remark 6: When the maximum allowable switches Nf is
reached and the conservative controller CΣD

PC is switched on,
the energy of the overall system Eall may accumulate until the
end of the user-defined operation interval of pHRI. In prac-
tice, engineers commonly introduce an additional parameter
for energy ceiling to cap Eall, as described in [15], which
discards potentially dangerous excessive accumulated energy.
This energy accumulation can also be more systematically
managed by the method in [17] to avoid the “memory effect”.

D. Main Result

In this subsection, the following theorem shows that the
proposed algorithm can ensure that the pHRI system with
Assumptions 1, 2, and 3 is ultimately passive. These three
assumptions are necessary. The first two prevent scenarios
where the energy of unstable subsystems drops to negative
infinity within a single step, leading to the proposed UPC
being ineffective. With Assumptions 1 and 2 held, the third
assumption ensures the existence of a conservative controller,
which can increase the energy of Σall to positive so that the
stability is guaranteed.

Theorem 1: Assume that Assumptions 1, 2, and 3 hold
for the pHRI system presented in Figure 4. For any given
Eall[0] = E0, there is a positive pair

{
Ē,E

}
and a positive

integer Nf such that the proposed algorithm, which consists of
the energy observer (11), the predicted energy (12), the logic
(13), the counter (14), and UPC (15), ensures the pHRI system
ultimately passive.
Proof:

In the proof, we consider the worst-case scenario where
Eall[0] = E0 < 0. A similar argument applies when Eall[0] =
E0 ≥ 0. It is noted that by selecting E such that the following
inequality holds

E0 ≥ −E,

the proposed UPC (15) always has a lower bound −E and an
upper bound Ē provided that Assumptions 1, 2, and 3 hold.

For a given Nf , there exists a time instant Tf such that after
k ≥ Tf , the conservative controller will switch on. Along with
Assumption 3, it can ensure that the overall system is passive
at a steady state. This concludes that the overall pHRI system
is ultimately passive. □

Remark 7: When the pHRI system operates within a
defined finite interval [0, T ], the occurrences of switching
in this sampled-data system remain finite for any given
fixed sampling period Ts, since Ts cannot approach zero
due to practical constraints. Also, appropriately configured
UPC should prevent it from extremely frequent switching.
Consequently, selecting Nf is not always needed. However,
switching introduces discontinuity, potentially leading to more
oscillations. Engineering practitioners thus can determine a
maximum allowable switching Nf for a selected time interval
[0, T ] as a design choice based on application needs to prevent
excessive switching, which ensures optimal performance and
stability even in the most unstable scenarios of interaction.

The proposed UPC, which encompasses the switching
mechanism (15), along with the energy observer (11), the
predictive energy estimation (12), the governing logic (13),
and the counter mechanism (14), offers a comprehensive and
coherent approach to optimise the performance equilibrium
between two distinct controllers: the conservative variant
CΣD

PC and the nominal counterpart NΣD
PC . This optimisa-

tion is achieved through the configuration of the parameters{
Ē,E, Nf

}
.

In essence, a narrower gap between Ē and −E implies that
the action time of conservative controller CΣD

PC is relatively
short when it is activated each time, corresponding to a
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shorter period of nominal performance sacrifice on every
occasion. However, this design choice could lead to more
frequent switches — so more frequent performance sacrifice
— throughout the operation, reflecting a discernible design
trade-off. The selection of these parameters is inherently
dependent on the specific application context, but the effect
of different parameters and a general guide for their selection
is presented in the experimental results (in Section VI-C).

V. ADMITTANCE CAUSALITY EXPERIMENT

To evaluate the proposed Ultimately Passive Controller
(UPC), experiments were first conducted on an admittance-
based system. The system comprises a human operator (ΣH ),
a robot (ΣP ), a robot low-level controller (ΣC), a passivity ob-
server, a passivity controller (ΣPC), and a virtual environment
(ΣV E) as shown in Figure 4.

A. Experiment Setup and Design

An ArmMotus-M2 (Fourier Intelligence, Shanghai, China),
shown in Figure 7, was used as the admittance-based device
for this experiment. It is a 2D planar system with a workspace
of 575 × 400mm and equipped with a handle mounted on
two strain gauges. The passivity control algorithms were
implemented in C++ using the CORC framework [38] with a
control loop running at 1kHz, performing the kinematic and
interaction force acquisition at the same frequency. This suffi-
ciently small sampling period ensured the feasibility of using
the discrete-time version of passivity defined in Equations (3)
and (4). The position and force resolutions were 0.003mm
and 0.06N respectively.

It is noted that for an admittance device, it is challenging
to render high transparency (i.e. a low virtual mass and low
virtual damper) when the human operator (HO) suddenly
exhibits a high impedance [6]. Therefore, a highly transparent
VE was rendered in the x-direction with an admittance of{
mve = 0.24kg, bve = 0.08Ns ·m−1

}
to evaluate the effec-

tiveness of UPC in haptic interaction.
In order to evaluate the overall system performance in ren-

dering the more “transparent” possible behaviour, an effective
virtual mass me was defined as the overall mass value to
be rendered in the system, and a resulting effective virtual
damping be was calculated as

be =
fmTs −mevd +meẋm

vdTs
, (16)

Fig. 7. The two-dimensional admittance device used in the experiment.

where fm is the measured interaction force in the x-direction,
vd is the desired velocity in the x-direction to be implemented
by the low-level controller, ẋm is the measured velocity of
the robot end-effector in the x-direction, me is the effective
virtual mass value, and Ts is the system control loop period.
A smaller me and be value indicate a more transparent system
where the overall rendered behaviour is closer to the intended
VE.

During the experiment, the HO held the robot end-effector
while exhibiting high stiffness to the device (i.e. with muscles
co-contracted). Two different scenarios were tested for the
admittance causality experiment: HO’s single high stiffness
behaviour and repeated high stiffness behaviours.

B. HO’s Single High Stiffness Behaviour
In this task, the HO held the robot end-effector and

performed a sudden movement followed by a sudden stop
with persistent high arm stiffness (i.e. maximum arm co-
contraction). The proposed UPC was compared to 1⃝ the
Passivity Controller (PC) proposed by [14] (referred to as
“classic PC”), and 2⃝ the energy tank approach proposed
by [25] (referred to as “tank”) which were implemented on
the device.

The UPC switched between the nominal controller
with parameters {mPC,N = 0, bPC,N = 0} (bypassing the
system) and the conservative controller with parameters{
mPC,C = 0.1kg, bPC,C = 50Ns ·m−1

}
. The UPC’s upper

and lower bound of energy were tuned to be Ē = 0.1J and
−E = −0.1J respectively. For the tank implementation [25],
the following parameters were used: oscillation detection
threshold ϵ = 3.7m · s−2 (defined according to the calibration
procedure in [25]); forgetting factor β = 0.1; upper bound
of inertia variation ∆M = 0.5kg; tank storage upper bound
T̄ = 0.2J and lower bound δ = 0.05J .

Results for the different approaches are presented in Fig-
ure 8. As expected, as a consequence of HO’s sudden move-
ment, stop, and persistent arm stiffness, combined with a low
virtual mass of VE, the robot end-effector kept oscillating
when the PC was off (Figure 8.a). At the same time, the PO-
estimated energy fell to negative and remained dropping.

Figure 8.b shows the impossibility of the classic PC ap-
proach to stabilise the system in the same conditions. This
is due to a delay of approximately 6ms in this device’s
velocity control loop (from when a velocity command was
generated to when the corresponding velocity was measured).
This delay leads the PC-produced velocity to be out of phase
with the interaction force. This phase lag makes the system
especially inappropriate for using the classic PO-PC approach,
as this strategy relies on an online calculation of the PC virtual
damping which is directly affected by the asynchronicity of
the velocity and force signals, leading to continuing large os-
cillations, only bounded by the force acquisition saturation (at
100N ) and velocity command saturation (for safety reasons)
at 1.8m·s−1 (just below the system hard cut-off at 2.0m·s−1).

For the same scenario, the tank approach stabilised the
system when the HO exhibited high stiffness. At the time that
the measured acceleration tracking error exceeded the pre-
defined oscillation detection threshold ϵ, incremental virtual
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Fig. 8. System performance of the admittance device when the HO held the device end-effector and performed a sudden movement (i.e. first rapid increase
of force) followed by a sudden stop (i.e. first rapid descent of force) with persistent high stiffness, under the conditions of (a) PC switched off, (b) the classic
PC [14], (c) the tank [25], and (d) the proposed UPC. The inserted graph in (c) zooms in to show the detailed changes of effective virtual damping for the
tank. The PO-estimated energy (third row) was not used for the tank implementation but provided for comparison.

mass and damping were implemented in the system (see
Figure 8.c), representing a transparency sacrifice.

The UPC also stabilised the system promptly as shown in
Figure 8.d. The UPC switched to the conservative controller
when its lower bound of energy (−E = −0.1J) was reached,
resulting in higher effective virtual mass and damping values{
me = 0.34kg, be = 50.08Ns ·m−1

}
so lower transparency.

It is noted that in this task, the HO maintained their high
stiffness behaviour (i.e. arm co-contraction) to the end of the
trial, so the robot end-effector remained (almost) stationary.
This led to a very slow dissipation of excess energy — as the
dissipation relies on movement — and the UPC thus remained
in the conservative mode (before reaching the upper bound of
energy Ē).

C. HO’s Repeated High Stiffness Behaviour

For the second task, the HO moved the robot end-effector
in the x-direction gently most of the time, but for three short
episodes of high stiffness behaviour (i.e. arm co-contractions)
followed by one longer episode of high stiffness behaviour.
The shorter arm co-contractions lasted for less than 1s, and the
longer one was kept for approximately 2s. Given the capability
of the tank [25] and UPC in stabilising the system shown
in Section V-B, these two approaches were subsequently
evaluated in this scenario.

Here the UPC switched between the nominal controller
{mPC,N = 0, bPC,N = 0} and the conservative controller{
mPC,C = 0.1kg, bPC,C = 50Ns ·m−1

}
, determined by the

upper bound (Ē = 0.1J) and the lower bound (−E = −2J)
of energy. A lower −E less than 0 was selected for this task,
to demonstrate how non-passive transient behaviour can be
allowed in order to produce less frequent but longer PC cor-
rections. It is expected to sacrifice the rendering performance
less frequently while still ensuring the system to be ultimately
passive. The tank implementation used the same parameters
provided in Section V-B.

Not surprisingly, as shown in Figure 9, both the tank and
the UPC stabilised the system during the longer high stiffness
episode (corresponding to the fourth rapid ascent of force in
the figure). However, the tank and the UPC exhibited distinct
performance in terms of the effective virtual mass me and
damping be throughout the trial. The tank increased me and be
four times in response to HO’s first three shorter high stiffness
behaviour and the fourth longer one (Figure 9.a). Each episode
led to an occurrence of transparency loss.

In contrast, the UPC maintained the system at its intended
transparency most of the time even during the three short high
stiffness episodes (corresponding to the first three rapid ascents
of force in Figure 9.b). It only altered me and be once at the
HO’s fourth high stiffness behaviour (the longer maximum
arm co-contraction) when the energy level effectively dropped
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(a) Tank (b) UPC

Fig. 9. System performance of the admittance device when the HO moved the robot end-effector gently most of the time and performed three short episodes
followed by a longer episode of high stiffness (i.e. visible as the four higher force episodes in the top row) with (a) the tank approach [25], and (b) the
proposed UPC. The PO-estimated energy (third row) was not used for the tank implementation but is provided for comparison.

bellow the UPC’s lower bound of energy (−E = −2J).
After that, the UPC kept applying the conservative controller
— resulting in sacrificed performance me = 0.34kg and
be = 50.08Ns · m−1 — to dissipate excess energy until
the PO-estimated energy reached the energy upper bound
(Ē = 0.1J) to regain passivity. The UPC then switched back
to the nominal controller, and the system restored its intended
transparency

{
me = 0.24kg, be = 0.08Ns ·m−1

}
.

VI. IMPEDANCE CAUSALITY EXPERIMENT

The proposed Ultimately Passive Controller (UPC) was then
evaluated on an impedance-based system. The first experiment
(single-contact scenario in Section VI-B) aims to evaluate the
generalisability of the UPC approach to impedance causality
and its comparison with the classic PC approach, whereas a
second experiment (repeated-contact scenario in Section VI-C)
specifically aims to illustrate the effect of different UPC
parameters and serve as a general guide for their selection.

A. Experiment Setup and Design

Algorithms were implemented on a three-dimensional
impedance device (see Figure 10). The device workspace can
be approximated by a cube with dimensions 450 × 700 ×
400mm, and it was always operated in a gravity-compensated
and friction-compensated mode during the experiment. The

passivity control algorithms were implemented in C++ using
the CORC framework [38] with a control loop running at
1kHz. The position and force resolutions were 0.05mm and
0.09N respectively.

In contrast to admittance causality, the challenge for an
impedance device is to render high stiffness when the Human
Operator (HO) exhibits a low impedance. To evaluate the effi-
cacy of UPC in such a challenging circumstance, a commonly
used simplified case of haptic rendering was modelled, which
relied on the simplified modelling of penetration depth as a
virtual spring [30]. Specifically, a high stiffness VE (“virtual

Fig. 10. The three-dimensional impedance device used in the experiment.
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wall”) was built below a horizontal plane of z0 = −10mm
with a spring-type stiffness of kve = 7kN ·m−1.

To evaluate the overall rendered performance, a resulting
effective virtual stiffness ke for each contact was computed as

ke =

{
fd

z0−zm
if zm < z0

0 if zm ≥ z0
, (17)

where fd is the desired force to be applied by the robot in
the z-direction, zm is the measured position of the robot end-
effector in the z-direction, and z0 = −10mm is the position of
the virtual wall. Then, the normalised effective virtual stiffness
ke.nom was obtained by

ke.nom =
ke
kve

, (18)

where ke is the effective virtual stiffness calculated from (17),
and kve is the desired stiffness of VE which is 7kN ·m−1 in
this case. When the robot end-effector is in contact with the
virtual wall, ke.nom < 1 indicates that the overall rendered
stiffness is inferior to its desired stiffness (i.e. a loss of
performance).

During the experiment, the HO held the device end-effector
to approach and contact the virtual wall. Two distinct in-
teraction scenarios were tested for the impedance causality
experiment: single contact and repeated contacts.

B. Single Contact with Virtual Wall

In this scenario, the operator held the device end-effector to
approach the virtual wall and did not attempt further contact
with the virtual wall after the first bounce. For comparison,
the classic PC algorithm [14] and the proposed UPC were
evaluated.

The UPC was setup to switch between the nominal con-
troller with parameters {mPC,N = 0, bPC,N = 0}, acting as a
bypass for the system, and the conservative controller with
parameters

{
mPC,C = 0, bPC,C = 60Ns ·m−1

}
. The UPC

was tuned with an upper bound of energy Ē = 0.05J , and
a lower bound of energy −E = 0J , set to exhibit a behaviour
similar to the classic PC for comparison.

When the PC was turned off, the end-effector kept bouncing
in the z-direction once it bumped into the virtual wall (see
Figure 11.a). The PO-estimated energy was observed to drop
below zero, which reflected the unstable behaviour caused by
the stiff VE.

In the same conditions, the classic PC dissipated just
enough excess energy when the system shifted to non-passive,
resulting in constantly positive PO-estimated energy (see Fig-
ure 11.b). As expected, it is noted that ke.nom dropped below
its desired value when the classic PC was triggered (justified
by the non-zero PC force), indicating that the PC virtual
damper effectively reduced the overall rendered stiffness.

Similarly, the UPC was able to stabilise the system in a
timely manner and maintain the system passive as shown in

0 0.5 1 1.5

-11

-10

-9

-8

P
o
s
it
io

n
 (

m
m

)

Virtual wall

In contact with wall

0 0.5 1 1.5

0

20

40

V
E

 F
o
rc

e
 (

N
)

0 0.5 1 1.5

0

0.1

E
n
e
rg

y
 (

J
)

0 0.5 1 1.5
-40

-20

0

20

P
C

 F
o
rc

e
 (

N
)

0 0.5 1 1.5

Time (s)

-1

0

1

N
o
rm

a
lis

e
d
 V

ir
tu

a
l 
K

In contact with wall

(a) Without PC

0 0.5 1 1.5

-11

-10

-9

-8

P
o
s
it
io

n
 (

m
m

)

Virtual wall

In contact with wall

0 0.5 1 1.5

0

20

40

V
E

 F
o
rc

e
 (

N
)

0 0.5 1 1.5

0

0.1

E
n
e
rg

y
 (

J
)

0 0.5 1 1.5
-40

-20

0

20

P
C

 F
o
rc

e
 (

N
)

0 0.5 1 1.5

Time (s)

-1

0

1

N
o
rm

a
lis

e
d
 V

ir
tu

a
l 
K

PC idle

PC working

In contact with wall

(b) Classic PC

0 0.5 1 1.5

-11

-10

-9

-8

P
o
s
it
io

n
 (

m
m

)

Virtual wall

In contact with wall

0 0.5 1 1.5

0

20

40

V
E

 F
o
rc

e
 (

N
)

0 0.5 1 1.5

0

0.1

E
n
e
rg

y
 (

J
)

UPC upper bound

UPC lower bound

0 0.5 1 1.5
-40

-20

0

20

P
C

 F
o
rc

e
 (

N
)

0 0.5 1 1.5

Time (s)

-1

0

1

N
o
rm

a
lis

e
d
 V

ir
tu

a
l 
K

UPC-Nominal

UPC-Conservative

In contact with wall0.08 0.1 0.12

-20

-10

0

(c) UPC

Fig. 11. System performance of the impedance device when the HO held the device end-effector and performed a single contact with the virtual wall, under
the conditions of (a) PC switched off, (b) the classic PC proposed by [14], and (c) the proposed UPC. The inserted graph in (c) shows the normalised effective
virtual stiffness values outside the y-axis limit.
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Fig. 12. System performance of the impedance device when the HO held the device end-effector and performed repeated contacts with the virtual wall, under
the conditions of (a) the classic PC proposed by [14], and (b) to (d) the proposed UPCs with virtual damping bPC,C = 60Ns · m−1 and lower bound of
energy −E = 0J , −E = −0.05J , and −E = −0.1J respectively. The inserted graph in (d) shows the normalised effective virtual stiffness values outside
the y-axis limit.
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Figure 11.c. The UPC started dissipating excess energy from
the PO-estimated energy turning negative (i.e. below −E =
0J) until reaching the pre-defined UPC upper bound of energy
(Ē = 0.05J in this case). In this procedure, the normalised
effective virtual stiffness was observed to drop significantly
to ke.nom = −22.63, showing a sharper and harsher reaction
than the classic PC.

C. Repeated Contacts with Virtual Wall

In this second scenario, the HO held the device end-effector
to approach the virtual wall and kept trying to maintain contact
with the wall during 5s. This scenario is more representative
of what a haptic exploration would be where the operator is
almost continuously in contact with a virtual stiff shape. In
addition to the previous experiment, several different values
of UPC’s lower bound of energy −E and virtual damping
bPC,C were implemented to provide a general indication of
UPC parameter selection.

1) Comparison between classic PC and UPC: In this
trial, the UPC switched between the nominal controller
{mPC,N = 0, bPC,N = 0} and the conservative controller{
mPC,N = 0, bPC,C = 60Ns ·m−1

}
, determined by the up-

per bound (Ē = 0.05J) and the lower bound (−E = 0J)
of energy. When the HO bumped into the virtual wall in a
repeated manner with the classic PC turned on, the system
retained positive energy (passive state). However, its ke.nom
fell down below its desired value almost at each contact as

shown in Figure 12.a. In contrast, Figure 12.b shows that the
UPC maintained the system at its desired stiffness level most
of the time and was only altered four times (approximately at
1.3s, 2.5s, 3.6s, and 4.8s).

2) Effect of lower bound of energy (−E): When the same
virtual damping (bPC,C = 60Ns ·m−1) and upper bound of
energy (Ē = 0.05J) were used, all the UPCs with various
lower bound of energy values (−E = 0,−0.05,−0.1J) were
able to restore the passivity of the system. However, the UPC
with −E = 0J switched to the conservative controller four
times (representing a stiffness sacrifice), while this switching
happened only twice for the UPC with −E = −0.05J and
once for the UPC with −E = −0.1J in the five-second interval
and for the same number of contacts with the virtual wall
(see Figure 12.b,c,d). This illustrates that a lower value of
−E allows more frequent non-passive transients, such that the
rendering performance can be sacrificed less frequently while
keeping the system ultimately passive.

3) Effect of conservative controller damper (bPC,C): Sim-
ilarly, when the same upper bound (Ē = 0.05J) and lower
bound of energy (−E = −0.1J) were used, all the UPCs with
various virtual damping values (bPC,C = 20, 60, 100Ns·m−1)
brought the system back to positive energy (passive state).
More importantly, with an increasing bPC,C , the conservative
controller action time (i.e. dissipating excess energy from −E
triggered until Ē reached) reduced from 0.29s to 0.10s and
0.02s respectively (see Figure 13.a,b,c). At the same time,
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(c) UPC with bPC,C = 100Ns ·m−1

Fig. 13. System performance of the impedance device when the HO held the device end-effector and performed repeated contacts with the virtual wall, under
the conditions of (a) to (c) the proposed UPCs with lower bound of energy −E = −0.1J and virtual damping bPC,C = 20Ns ·m−1, bPC,C = 60Ns ·m−1,
and bPC,C = 100Ns ·m−1 respectively. The inserted graphs in (b) and (c) show the normalised effective virtual stiffness values outside the y-axis limit.
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the absolute value of peak PC force — as a result of the
implementation of UPC virtual damping — increased from
12.9N to 52.5N and 83.9N respectively (see Figure 13.a,b,c).
This shows how selecting a larger UPC virtual damping leads
to a shorter but heavier performance sacrifice. This sacrifice
was clearly visible on the drop of the effective virtual stiffness,
with a minimum value ke.nom = −15.5 for a bPC,C of
100Ns ·m−1 compared to only ke.nom = −3.2 for a bPC,C

of 20Ns ·m−1.

VII. DISCUSSION

A. Performance Comparison
The proposed Ultimately Passive Controller (UPC) aims

to allow for a less frequent sacrifice of performance while
still ultimately maintaining the system passive and so safe
for the user. Experiments conducted on both admittance and
impedance devices show that the UPC is able to stabilise pHRI
systems and can maintain an overall better performance (i.e.
render intended VE) most of the time compared to classic PC
and tank approaches.

Specifically, the UPC first showed the ability of maintain-
ing the pHRI system stable when the HO performed single
destabilising behaviours. For example, in the implementation
on the admittance-causality system (Section V-B), where ren-
dering a very low impedance is challenging when the HO
displays a high stiffness, the tank approach [25] stabilised
the system during the HO’s single persistent high stiffness
behaviour. In comparison, the UPC stabilised the system even
more promptly in this scenario, as it did not wait to be
activated until the robot end-effector oscillations intensified
to a pre-defined oscillation detection threshold like the tank
approach. Similarly, the implementation on the impedance-
causality system (Section VI-B), where rendering a high-
stiffness VE is challenging, showed that the classic PC was
able to stabilise the bouncing robot end-effector in the scenario
with a single contact with the virtual wall, as previously shown
in [14]. In this scenario, due to a larger response, the UPC
provided a faster stabilisation, effectively reducing the number
of bounces, but at the cost of a larger drop of performance.

It is in the HO’s repeated destabilising behaviours, more
representative of actual pHRI use-cases, that the UPC dif-
fered more significantly from the tank and the classic PC
approaches. In the admittance-causality experiment (Sec-
tion V-C), the UPC more heavily sacrificed performance only
once and maintained the intended VE transparency at all other
times during the HO’s repeated high stiffness episodes. Such
a strategy effectively reduced the frequency of performance
sacrifice compared to the tank approach, where the intended
transparency was affected at each HO’s high stiffness episode,
even if such episodes were short. Such approach could thus
handle scenarios, reported by Meulman et al., where a lower-
limb exoskeleton contacts with the ground during the stance
phase, highly increasing the environment stiffness and thus
problematic for admittance devices [39]. While in their ap-
proach the system admittance can be tuned based on the
exoskeleton phase (stance detection), it might be desirable
to automate such switching as it could be done with a UPC
implementation.

Likewise, in the repeated-contact scenario of the impedance-
causality experiment (referred to Section VI-C), the classic PC
was activated at almost each contact as expected, effectively
rendering a stiffness lower than intended for the user. Instead,
the UPC sacrificed stiffness for a much lower number of
contacts (only four contacts among 27) when it was setup with
a configuration very similar to the classic PC. The UPC was
thus able to uphold the system’s stability with a smaller cost
to the system’s performance. Such behaviour can be desirable
in applications where high fidelity to the VE is expected and
only rarely sacrificed, such as in haptic exploration.

By reflecting on the UPC’s transient dynamics shown in
the experimental results, it can be summarised that the UPC
approach is more suitable when challenging environments
and rendering behaviour are more frequent or continuous.
This is more typically the case for admittance-based devices
intending to be very transparent while the operator may exhibit
high stiffness frequently. In those conditions, the UPC will
regularly allow some short non-passive transient behaviours
and compromise performance heavily at a given time, as such
providing an overall better rendering of the desired VE over
the entire duration of the interaction.

B. Effects of Delay and Other Non-Linearities

Similar to the classic PO-PC approach, the UPC relies
on a PO to online estimate the energy and determine the
PC reactions (i.e. the switching of two control modes in the
UPC case). Both of these approaches thus suffer from energy
estimation errors due to delays and other non-linearities [6].
However, the online calculation of a stabilising virtual damper
(as in the classic PO-PC approach) is also strongly affected by
control loop delays, which are common in commercial devices.

This is clearly seen in Section V-B where, even if the
classic PC was triggered as expected, it was not able to
stabilise. This delay leads the PC-produced velocity to be out
of phase with the interaction force, compromising the online-
calculated PC velocity supposed to stabilise the system. This
limitation affecting the classic PC online calculation is clearly
exemplified by the control loop delay, but also represents the
effect of other non-linearities in the system.

Although the UPC does not depend on an online calculation
of a virtual damper value like the classic PO-PC approach, this
delay still influences the timing at which the UPC switches to
react, so potentially limiting the UPC performance to some
extent. Still, the quasi-constant conservative controller of the
UPC does not suffer from the control loop delay and other
non-linearities, hence being able to stabilise the system at
the condition to include a reasonable additional stabilising
mass in order to slow down the system. This result also
confirms the importance of virtual inertia in stabilising a
delayed admittance-based system.

In real-world implementations, it is possible that a device
may not have sufficiently fast sampling or direct measurements
of force and velocity signals at the interaction point using fast
sensors to provide an accurate energy estimation. Additionally,
engineers might lack knowledge of the exact delays (if any) in
the system. A reasonably accurate energy estimation by a PO
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thus cannot be guaranteed, given that the PO’s performance is
inherently limited by delays and other non-linearities. In such
cases, engineers may consider implementing a robot oscillation
detector, as described in [25], to utilise the manifestation of
physical phenomena (i.e. oscillation) to determine the timing
of switching as compensation for the inaccuracies in the PO.

C. UPC Parameters Tuning

It should also be noted that the UPC scheme has the capa-
bility to be applied to different applications by allowing to bal-
ance more finely stability and performance based on the exact
need. This can be achieved by tuning the virtual damping and
energy-bound factors appropriately, effectively balancing how
often and how much the controller will sacrifice performance
to guarantee stability. As shown in the experimental results of
Section VI-C, with a fixed virtual damping and upper bound
of energy, selecting a more negative lower bound of energy
allows less frequent performance sacrifice while keeping the
system ultimately passive. In addition, with a fixed upper
bound and lower bound of energy, selecting a larger UPC
virtual damping can realise a shorter but heavier performance
sacrifice. While illustrated on an impedance device, similar
guidelines apply to an admittance device, and the reader can
also refer to [40] for a detailed simulation analysis.

As a general guide for UPC parameters selection, if more
occasional and heavier performance sacrifices are favoured, a
more negative energy lower bound and larger virtual damping
should be used, and vice versa.

Furthermore, although it is acknowledged that adding a
virtual mass and/or virtual spring element in UPC may assist
with system stabilisation (usually for admittance-causality),
only a small virtual mass was used in the UPC conservative
controller configuration for the admittance experiment (see
Section V) — as implemented in [25] — while stiffness was
omitted as a trade-off between effective system stabilisation
and more intuitive and simpler parameter tuning.

D. Limitations

While the proposed UPC approach provides the advantages
to (1) allow transient non-passive behaviours (so sacrifice the
intended behaviour less frequently) and (2) allow a more
application-specific behaviour design of the interaction (i.e.
how often and how heavily the PC responds) than previous
approaches, the latter advantage also constitutes one of its
limitations. Although general guidelines exist to tune the UPC
energy bounds and controllers (as illustrated in Section VI-C),
no absolute rule can be provided to select such parameters.
Thus, the proposed approach appears suitable in scenarios
where it is possible to experimentally evaluate the effect of
the parameters in order to obtain the best possible behaviour
for the application.

Finally, it also acknowledged that all experiments presented
were run by a Human Operator (HO). While this experimental
design has the advantage of demonstrating close to real-world
pHRI scenarios, it remains dependent on the repeatability
of the HO behaviour. Indeed, even if the HO attempted to
maintain a very similar interaction behaviour for different

trials to the best of their ability, this might still introduce
some deviations in the approach speed, the HO exerted force
and their exhibited stiffness. Future work could use another
device to manipulate the robot to mimic the HO in a controlled
manner for a more systematic and quantitative evaluation.

VIII. CONCLUSIONS

This paper proposes a novel concept of ultimate passivity to
balance the trade-off between system performance and stability
in pHRI. Compared to traditional passivity-based approaches,
this ultimate passivity concept allows the system to have
bounded non-passive transients while ensuring the system is
ultimately passive in steady-state. Using such a concept, the
Ultimately Passive Controller (UPC) is proposed and designed
as a switch between a nominal controller for implementing
desired performance and a conservative controller for stabil-
ising the system. Experiments are conducted on admittance-
based and impedance-based systems to evaluate the efficacy
of the UPC. The experimental results show the capability of
UPC in stabilising the system and maintaining an overall better
performance than other approaches, as well as the possibility
of defining the balance between performance and stability by
appropriate UPC parameter selection.
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